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Abstract

Both experimental and clinical cardiac electrophysiol-
ogy data often are recorded with limited spatial resolution
or inconsistent spatial distribution. Rather than interpo-
lating such data, which neglects constraints imposed by
dynamics, data assimilation can be used to mitigate the ef-
fects of low-resolution data by providing estimates of volt-
age in unmapped areas. Here, we investigate the effects of
different spatial distributions of observation data on car-
diac voltage reconstructions over time using data assimila-
tion. We used an ensemble Kalman filter method to recon-
struct complete, uniform voltage data from observational
data with different spatial distributions. Stable spiral-wave
and sustained spiral-wave breakup cases from the modified
Mitchell-Schaeffer model were analyzed. Coarse uniform
observations and observations restricted to half the do-
main were considered. Stable spiral wave dynamics could
be reconstructed well, with some lag at the coarsest resolu-
tions and for half-domain observations far from the spiral
core. Breakup cases were more difficult to match quantita-
tively; scenarios with fewer spirals or greater observation
coverage of the most intense breakup regions could be re-
constructed more accurately. Overall, we found that accu-
rate voltage reconstructions could be generated for stable
waves and breakup cases using data assimilation, provided
that observations include regions driving breakup.

1. Introduction

Although accurate estimates of complex spatiotemporal
cardiac electrophysiology states may facilitate several av-
enues of research, including customized defibrillation and
ablation planning, accurate estimation of voltages in tis-
sue remains a difficult challenge. One estimation option,
simulation of tissue dynamics using cardiac electrophysi-
ology models, has high spatial resolution and may repre-
sent many variables of interest, but model predictions are
an approximation of real-world data. In contrast, cardiac

electrophysiology recordings are often sparse in space or
time and may not include all variables of interest. Al-
though interpolation can be used to increase time or space
resolution, this procedure ignores constraints imposed by
dynamics and cannot predict other variables that may not
be observed. In addition, interpolation may have difficulty
in cases where portions of the domain may not be repre-
sented, such as in regions that are clinically inaccessible
with mapping catheters or, for optical mapping, when tis-
sue shape is irregular or dye is distributed unevenly.

Data assimilation is a commonly used estimation pro-
cedure that aims to merge the best aspects of numerical
model predictions and real-world observational data. In
previous work [1–4], we used the Local Ensemble Trans-
form Kalman Filter [5] combined with the Fenton-Karma
numerical prediction model [6] to reconstruct states in one
and three spatial dimensions. Although we studied the
roles of model error and various algorithmic parameters,
our consideration of the impact of the spatial distribution
of observations was limited to a comparison of two differ-
ent uniform spatial resolutions in one dimension and to the
use of spatially uniform vs. surface-only observations in
three dimensions [1]. In the present work, we consider how
the spatial distribution of observations affects the quality of
state reconstruction by varying the spatial resolution of ob-
servations more widely and by utilizing spatially nonuni-
form observations within a two-dimensional domain.

2. Methods

2.1. Model

Our data-assimilation method used the two-variable
modified Mitchell-Schaeffer model [7], which eliminates
unwanted pacemaker behavior present in the original
model. The model equations were integrated numeri-
cally using forward Euler with a time step of 0.25ms,
spatial step of 0.05 cm, and diffusion coefficient of
0.001 cm2/ms. The domain size was 200×200, corre-
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sponding to a physical size of 10 cm×10 cm.
Three parameter sets were used. Parameter set 1, which

led to stable spiral waves following a meandering linear
core, consisted of τin = 0.35ms, τout = 0.6ms, τopen =
120ms, τclose = 150ms, and vgate = 0.13 For parame-
ter set 2, which yielded spatially discordant alternans with
breakup developing far from the spiral core, only three val-
ues were set differently: τin = 0.3ms, τopen = 150ms,
and τclose = 170ms. Parameter set 3 produced sustained
spiral wave breakup and used the same values as param-
eter set 1 except for τin = 0.3ms. Spiral waves in all
cases were initiated using a cross-stimulation protocol, and
a spin-up period was utilized to bypass transient behavior
associated with initiation.

2.2. Datasets

Because our focus was on the effects of observation dis-
tributions on state reconstruction accuracy, we used volt-
age observations derived from the same model (no model
error). Random Gaussian erorr with a mean of 0 and stan-
dard deviation of 0.1 was added to create the observations.
Two types of observation distributions were considered:
uniform but coarse observations corresponding to grids of
100×100 (0.1 cm spacing), 50×50 (0.2 cm spacing), and
25×25 (0.4 cm spacing), and ”half-domain” observations
consisting of all voltage values from either the right half or
the top half of the domain.

2.3. Data Assimilation

Briefly, data assimilation is an approach for generat-
ing state reconstructions from sparse and noisy observa-
tions by integrating predictions generated by a numeri-
cal model. For high-dimensional systems, such as our
two-dimensional tissue simulations, efficiency is improved
through the use of an ensemble of system states to charac-
terize uncertainty. For this work, we adapted the Paral-
lel Data Assimilation Framework (PDAF) [8] to support
a two-dimensional implementation of cardiac tissue [9].
PDAF includes a variety of data-assimilation approaches;
we used the Error Subspace Transform Kalman Filter (ES-
TKF) [10], which was designed to increase efficiency
and performs computations within the error subspace de-
scribed by the ensemble. The ensemble size was fixed at
10 members, observations were assimilated every ten time
steps (2.5ms), and runs lasted 4 s. Initial ensemble mem-
bers were generated from spinup states as in [3].

3. Results

Figure 1 shows voltage reconstructions from uniform
coarse observations at two time points for a meandering

Figure 1. Truth state and voltage reconstructions for the
linear core case (parameter set 1) using observations of
varying coarseness.

linear core case without breakup. Good agreement is ob-
served throughout the simulations. When the coarsest ob-
servations are used, a small degree of lag appears toward
the later times, slightly distorting the spiral tip shape.

When discordant alternans occurs, leading to breakup
far from the core over time, the voltage estimates show
greater error, as shown in Figure 2. Differences from the
slight slowing of the wavefronts when the observations are
coarsened are amplified in the setting of discordant alter-
nans, leading to larger differences between the voltage re-
constructions and the truth. While the estimates are gener-
ally accurate while the spiral wave is stable, once breakup
begins, the fine “fibrillatory” dynamics is difficult to re-
produce with quantitative accuracy. Nevertheless, even the
coarsest set of observations yields an estimate that qualita-
tively matches the stable spiral wave with breakup far from
the core. Figure 3 shows that that root mean square er-
ror (RMSE) remains consistent over the entire simulation;
the RMSE oscillations correspond to the alternans period,
which is roughly twice the rotation period.
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Figure 2. Truth state and voltage reconstructions for the
discordant alternans case (parameter set 2) using observa-
tions of varying coarseness.

Figure 3. Root mean square error (RMSE) as a function
of time for the discordant alternans case (parameter set 2)
using observations of varying coarseness.

For the scenario with sustained spiral breakup, produc-
ing accurate estimates is more challenging, as can be seen
in Figure 4. Early in the simulation, the dynamics include
sharp spiral wave turns leading to the tip stalling and re-
forming. By 1 s, differences along the wave back near the

core can be seen in the estimates except for the finest res-
olution. Spiral breakup begins soon after, characterized in
this case by many short-lived waves with extremely small
wavelengths. Data assimilation has difficulty recovering
the details of these fine-scale patterns, as can be seen by
the differences between the truth and voltage estimates af-
ter 2 s. Even the finest observations considered cannot re-
produce the specific details of the truth state when it is
characterized by sustained spatiotemporal chaos.

Figure 4. Truth state and voltage reconstructions for the
breakup case (parameter set 3) using observations of vary-
ing coarseness.

In the cases considered so far, the observations tested
were uniform throughout the grid, although at different
spacings. As an additional scenario, we use observations
restricted to one half of the domain for the discordant al-
ternans dynamics of Figure 2. As shown in Figure 5, such
a case can produce surprisingly good results. When obser-
vations are included on the right half of the domain, the
estimates closely match the truth throughout the 4 s simu-
lated, with only small discrepancies along the top and right
edges. In contrast, when observations are restricted to the
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top half of the domain, the results are considerably worse;
even the stable spiral wave is no longer captured properly,
and discrepancies are visible even after 2 s, when breakup
has not yet occurred.

Figure 5. Truth state and voltage reconstructions for the
discordant alternans case (parameter set 2) using observa-
tions in the right half and top half of the domain.

4. Conclusion

In this paper, we have considered the problem of state
estimation of cardiac voltage for different two-dimensional
dynamical regimes. We used an ensemble Kalman filter
method with observations at different spatial distributions,
including three uniform observation sets of varying coarse-
ness and two sets of observations limited to half of the do-
main. In general, we found that data assimilation could
produce quantitatively accurate voltage estimates when
breakup did not occur. In breakup cases, coarse observa-
tion grids did not perform as accurately, but still produced
qualitatively similar voltage estimates. Observations lim-
ited to half of the domain produced estimates with less
predictable reliability, likely depending on the proximity
of the the region with observations to the spiral wave core
and the areas with the most severe breakup.

We note that we have considered only synthetic obser-
vations from a single model and a single assimilation inter-
val; other choices could lead to different results. In addi-
tion, we have used only one type of data assimilation (ES-

TKF); other approaches may be more beneficial, including
use of localization [3]. Future work is needed to study how
observation spatial coverage impacts voltage estimates us-
ing experimental or clinical data.
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